Tidal Datums & Coastal Profiles

DGGS Coastal Hazards Program - Fairbanks, AK

Program Manager: Nicole Kinsman

nicole.kinsman@alaska.gov

907-451-5026

AOOS-funded DGGS Projects:

- 1) Port Heiden Short-Term Tide Gauge Instillation
- 2) Development of a Digital Repository for Coastal Elevation Profiles in Alaska

CONTEXT

MOTIVATION

APPROACH

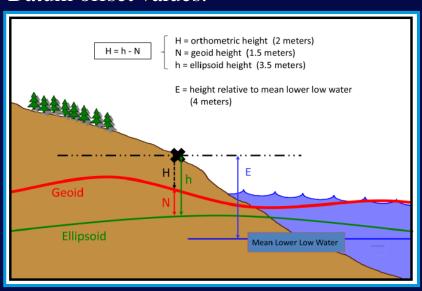
STATUS

NEW DEVELOPMENTS

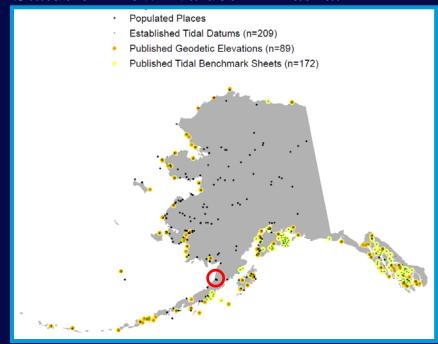
Tide Gauge Project – Context

Tidal Datums (MSL, MHHW (standardized local sea levels)

Geodetic Datum
(NAVD88 = current standard in U.S.)



NAVDSS


Storm Surge Forecast

Local MSI

Datum offset values:

Status of known values in Alaska:

Tide Gauge Project – Motivation

National Water Level Observation gap:

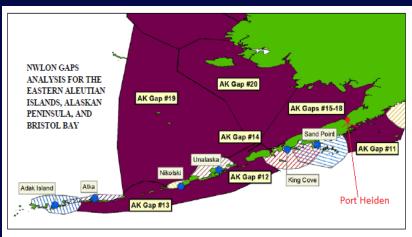
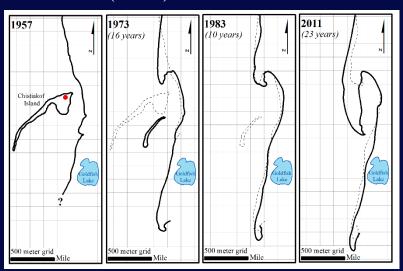



Figure 27. NWLON gaps analysis for the eastern Aleutian Islands, Bristol Bay and Alaskan Peninsula.

Old datums (1957) and no tidal benchmarks:

DGGS erosion mapping in Port Heiden:

Tide Gauge Project – Approach

- Contracted with JOA Surveys, LLC in cooperation with UAF research intern (Kimber Tweet)
- Instillation from September-October, 2013
- Live-streamed to AOOS portal
- Retrieval combined with DGGS data collection

Tide Gauge Project – Status

- Tidal benchmark positions have been formally submitted to the NGS database →
- Tide station files have been formatted to meet NOAA specifications for ingestion into CO-OPS database
- Local tidal datums delivered to DGGS for incorporation into tidal datum calculator

SURVEY DATASHEET (Version 1.0)

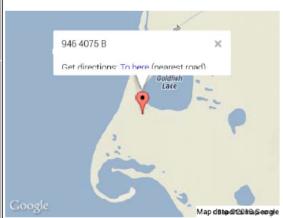
PID: BBDG96 Designation: 946 4075 B Stamping: 4075 B 2013

> Stability: Monument will probably hold position well Setting: Stainless steel rod in sleeve (10FT+ or 3.048M+)

Description: The station is a stainless steel rod driven to a depth of 19.5 m (64 ft), encased in a PVC pipe with NOS logo cover set at the south end of the old Meshik village, 93 m (305 ft) ESE of the high water and cliff line, 72.72 m (238.6 ft) SSW of bench mark 946 4075 C, 45.46 m (149.1 ft) SW of the SW corner of a shed to the south of a red building with a fuel tank, 40.69 m (133.5 ft) SE of the NE

corner of a concrete slab fuel tank foundation with no tank, and 10 cm (0.3 ft) below grade.

Observed: 2013-09-07T23:07:00Z Source: OPUS - page5 1209.04



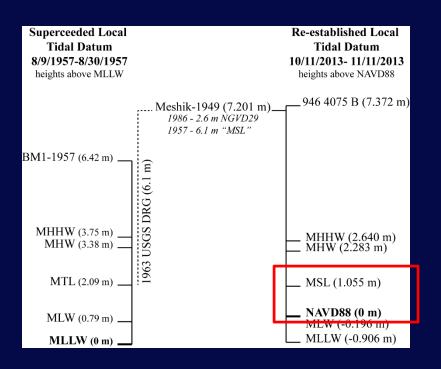
Close-up View

REF_FRAME: NAD_83(2011)	EPOCH: 2010.0000	SOURCE: NAVD88 (Comp GEOID12A)	puted using	UNITS: m	SET PROFILE	DETAILS
LON: -158° 41	1.09738" ± 0.004 m 0.62039" ± 0.003 m	NOF	UTM 4 RTHING: 6307260.		5006(AK 6) 99.573m	
ELL HT: 20.812 X: -3251730 Y: -126887			ASTING: 519273.4 GENCE: 0.265160		64.693m 264990°	
Z: 5320369 ORTHO HT: 7.372			SCALE: 0.999604 ACTOR: 0.999601		92125 91799	

CONTRIBUTED BY jon roder John Oswald and Associates, LLC

4075 B 2013,3N,20130909 Horizon View

The numerical values for this position solution have satisfied the quality control criteria of the National Geodetic Survey. The contributor has verified that the information submitted is accurate and complete.

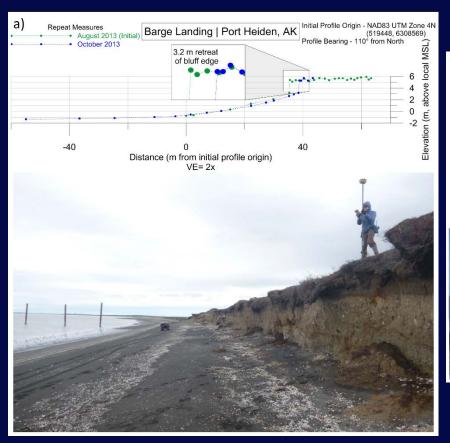

Tide Gauge Project – New Developments

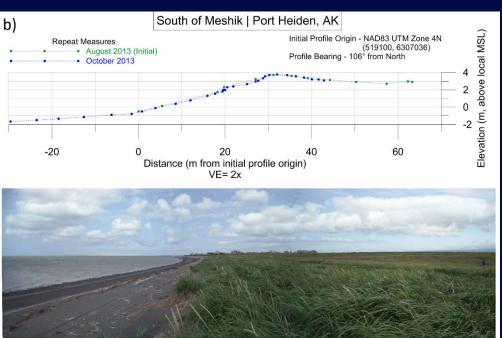
NOAA CO-OPS 2015-2019 Strategic Plan:

Increase by 50% the number of locations in the Arctic with modern tidal datums, benchmark sheets, and tidal predictions.

Establish the baseline Arctic datum reference system through the installation of both long-term and seasonal water level gauges

Provide increased access to legacy products that no longer meet CO-OPS operational standards for web-based access but can still provide value to customers

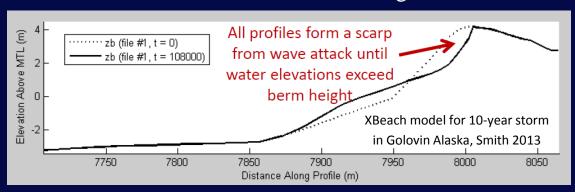

Updating DGGS tidal datum calculator:



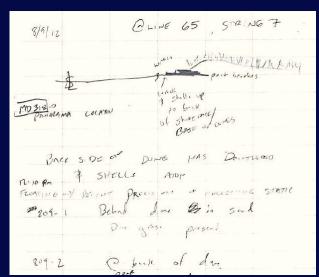
- New DGGS report on the contemporary rate of shoreline retreat in Port Heiden
- Enough information to calculate the relative rate of sea level rise in Port Heiden (negligible)
- First measured rate of contemporary sea level rise in Bristol Bay:

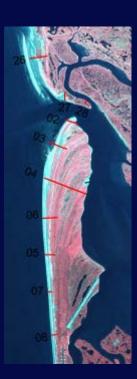
~1.6 mm/yr

Coastal Profile Project – Context



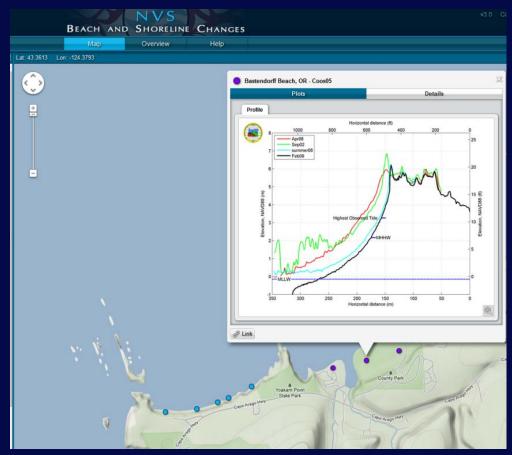
- Seasonal and annual change detection (sediment flux, erosion)
- Measurements of process-significant elevations (bluff toe, berm crest)


Coastal Profile Project – Motivation


Needed for advanced numerical modeling of the coastal zone

A statewide repository will:

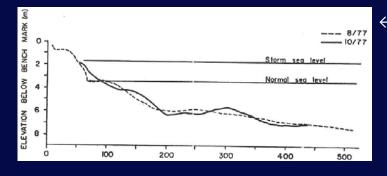
- Organize collections and databases
- Ease access to measured elevation profiles
- Encourage repeat collections in data-sparse regions



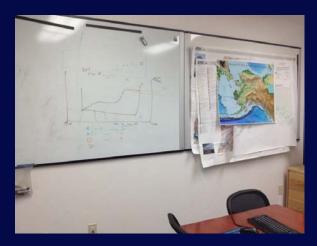
Coastal Profile Project – Approach

 Compared >15 example tools to select useful components for Alaska datasets and stakeholders

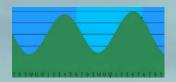
> California, Florida, Hawaii, Maine, New Jersey, New York, Oregon, Washington, S. Carolina, Texas, New Zealand, Australia and the United Kingdom


- Designed a list of priority capabilities, including:
 - Interactive plotting
 - Collaborative data submission
 - Raw data download
- Isolated a subset of our profile database for the design phase

PNOOS profile site


Coastal Profile Project – Status & Developments

Collecting and standardizing coastal elevation profiles, discussion of lidar inclusion *DGGS*, *NPS*, *USGS*, *DOT*, *UAA*


← 1977 measured elevation profile from Nome Alaska, by the late Abby Sallenger (USGS)

USGS												
Sallenge												
OME_Prof	i le017											
Monument		none										
13-JUL-7	7											
MSL	2.01											
	weeping											
	Northing		Easting	Latitude	L	ongitude	Horiz	STDV	Vert ST	DV	Elevation	(NADV88)
777_1	6308033.	775	519369.6	41 5	6.91558	-158.	681866	0.026	0.024	6.043		
777_2	6308034.	131	519367.2	38 5	6.915583	-158.	681906	0.027	0.026	6.127		
777_3	6308034.	705	519362.1	.09 5	6.915588	-158.	68199	0.026	0.024	6.456		
	6308035.	252	519359.1	68 5	6.915593	-158.	682038	0.03	0.032	6.938		
	6308035.		519357.4	91 5	6.915597	-158.	682066	0.031	0.026	7.161		
777_6	6308036.		519355.7		6.915602		682094	0.024	0.021	6.63		
777_7	6308037.		519349.0		6.915618		682204	0.024	0.021	6.551		
777_8	6308038.		519346.6		6.915622		682243	0.026	0.025	6.921		
777_9	6308039.		519339.3		6.915636		682363	0.023	0.022	6.977		
777_10	6308040.		519334.6		6.915644		68244	0.026	0.024	6.476		
777_11	6308042.		519327.1		6.91566		682563	0.024	0.023	6.653		
777_12	6308043.		519322.9		6.915669		682633	0.025	0.024	6.715		
777_13	6308043.		519320.5		6.915673		682672	0.025	0.025	6.224		
777_14	6308045.		519313.3		6.915687		68279	0.025	0.025	6.026		

Initial development of profile plotting tool with DGGS staff.

Status in Summary

Leveraging exiting activities and collaborations at DGGS we were able to significantly reduce the cost of a NOAA-spec tide gauge in Alaska, which has reestablished water level datums in Bristol Bay and provided a non-satellite measurement of sea level rise in southwest Alaska.

We are in the process of trying to track down all known coastal elevation profiles in Alaska and converting them into a standardized digital format which will allow for interactive visualizations and ease of access.

Thank You!