

Modeling Impact of Hydrokinetic Devices

Tom Ravens, Maria Kartezhnikova, Michael Ulmgren Garrett Yager, Charity Bare, Jennifer Ardelean TomRavens@uaa.alaska.edu 907-786-1943

UNIVERSITY of ALASKA ANCHORAGE

Modeling Impact of Hydrokinetic Devices

- Focus on impacts to:
 - velocity
 - water level
 - sediment transport (sedimentation/scour)
- Application to deployments in:
 - rivers
 - tidal inlets

Goals and Objectives

- Develop technique to represent presence of hydrokinetic devices using an enhanced bottom roughness.
- Use the enhanced roughness, in conjunction with standard circulation/sediment transport models, to estimate the impact of the HK devices on water level, water velocity, and sediment transport processes – in both riverine and coastal settings.

Background – the Manning Equation

1

Manning Formula:
$$V = \frac{1}{n} R_h^{\frac{2}{3}} S^{\frac{1}{2}}$$

- V cross-sectional average velocity
- *n* Manning's roughness coefficient
- R_h hydraulic radius = A/P
- (in wide channels, approximated by water depth: $R_h \approx h$)
- S bottom slope

Manning's equation is the most commonly used flow resistance equation, linking mean velocity (V) and flow resistance (n) in open channel.

Typical Cross Section:

Side View:

Approach to determining effective roughness accounting for presence of HK devices

1. Assume:

- simplified geometry:
 - wide rectangular channel ($R_h \approx h$)
- steady, uniform flow
- uniform distribution of devices
- 2. Analyze flow energetics with and without devices.
- 3. Determine effective Manning roughness when devices present.
- 4. Determine velocity and water level impacts assuming uniform distribution of devices.
- Determine impacts of non-uniform distributions of devices – in realistic flow situations - using an enhanced roughness to represent devices.

Background – Hydrokinetic Power Generation

$$P_{\rm e} = \frac{1}{2} \xi \rho V^3 A$$

$$P_{\rm e} < P_{\rm d}$$

- A cross sectional area of the rotor for turbine unit
- P_e power extracted by the turbines
- fluid density
- V average fluid flow velocity in the channel
- ξ turbine efficiency
- Pd total power dissipated including mixing losses and extraction

Determination of total dissipation of energy associated with the presence of the HK devices

Garrett & Cummins (2007):

System of Equations Defining Turbines Impacts

Findings

Equations – determining h_p

$$\frac{P_e}{P_d} = \frac{2}{3(1+\epsilon)} \approx \frac{2}{3}$$

Head loss due to turbine operation (assuming a single turbine):

$$h_p = \frac{3}{4} \frac{(\xi A_r V_{\ddagger}^2)}{gA}$$

$$h_p = \frac{3}{4} \frac{\xi A_r}{gwh} \frac{1}{t} \left(\frac{Q}{wh}\right)^2 = \left(\frac{3}{4} \cdot \frac{\xi A_r Q^2}{gw^3}\right) \cdot \frac{1}{h_t^3}$$

Notation

- A_r cross sectional area of the rotor for one turbine unit (m²)
- g acceleration due to gravity (9.81 m/s)
- h water depth (m)
- h_t water depth for the case when turbines are uniformly distributed over the bottom (m)
- ho fluid density (1000 kg/m³)

$$h_p = \frac{P_d}{\dot{m}g} = \frac{3}{2\dot{m}g} \cdot P_e = \frac{3}{2\dot{m}g} \cdot \left(\frac{1}{2}\xi\rho A_r V_t^3\right)$$

$$h_p = N \cdot \left(\frac{3}{4} \cdot \frac{\xi A_r Q^2}{g w^3}\right) \cdot \frac{1}{h_t^3}$$

allowing for multiple devices

Q – volume flow rate (m³/s)

V- average fluid flow velocity in the channel (m/s)

- w channel width (m)
- ξ turbine efficiency
- N number of turbines

Equations – determining h_t/h

Substituting for h_p into Energy Equation gives:

$$h^{-10/3} - h_t^{-10/3} - \left(\frac{3}{4} \cdot \frac{\xi}{n^2 g} \cdot \frac{NA_r}{wL}\right) \cdot h_t^{-3} = 0$$

Approximated solution for $h_t \le 1.5h$ (with average error of only 0.0006 %):

$$h_t = h \cdot \left(b^{1/3} - 0.28263 \cdot b^{-1/3} + 0.139296 \right) \qquad \frac{n_t}{n} = \left(\frac{h_t}{h} \right)^{3/5}$$

where:

 $b = 0.46088 \cdot a + ((0.46088 \cdot a + 0.68368)^2 + 0.022578)^{1/2} + 0.68368$

$$a = \left(\frac{3}{4} \cdot \frac{\xi}{n^2 g} \cdot \frac{NA_r}{wL}\right) \cdot h^{1/3}$$

Summary of results – for uniform distribution of devices

Input:

Channel geometry					
Water depth	h=	10	m		
Width of the channel	w=	500	m		
Turbines Characteristics					
Efficiency	ξ=	30%			
Rotor area	Ar=	13	m²		
Flow Characteristics					
Manning's					
roughness	n= (0.0250	1		
coefficient					
Slope	S= (0.0002	m/m		

Numerical Models

Case 1: Original conditions of the channel.

Case 2: Turbines are uniformly distributed on the bottom of the channel.

Case 1 and 2 models were used to determine discrepancy between model and estimated results

Summary of results – for uniform distribution of devices

Input:

Channel geometry					
Water depth	h=	10	m		
Width of the channel	w=	500	m		
Turbines Characteristics					
Efficiency	ξ=	30%			
Rotor area	Ar=	13	m²		
Flow Characteristics					
Manning's					
roughness	n= (0.0250	1		
coefficient					
Slope	S= (0.0002	m/m		

Validation of analytical calculations with numerical models

10% rise in water level, 10% reduction in velocity

Discrepancy of the Estimated Results and ISIS Outputs:

	Parameter	Case 1	Case 2
h (m)	ISIS Outputs	10.045	10.984
	Estimated results	10.000	11.020
	Discrepancy	0.45%	0.33%
V (m/s)	ISIS Outputs	2.614	2.390
	Estimated results	2.626	2.383
	Discrepancy	0.46%	0.29%

Case 3: Turbines are uniformly distributed only on short section of the channel.

Case 3: Model Results

Flow Velocity (m/s) and Water Depth (m) vs Distance (km)

Significantly reduced impact (~.3%, if devices are localized)

Further Investigation

Summary: HK impacts

- Relatively significant impact of HK devices when devices are uniformly distributed and when the density is sufficiently high
- Deployment of devices over a limited portion of the river leads to a significantly reduced impact
- Approach described can be used to estimate the far-field impacts of complex deployments of devices in water bodies with realistic geometry
- Approach can be extended to examine sediment transport impacts (e.g., sedimentation caused by reduced velocities)

Application: Red Devil on Kuskokwim River

Data:

Q₇₅ (m³/s) 2220 River Slope (m/m) 0.000115 Average Width (m) 350 Manning's roughness coefficient Average depth (m) 4.90

Uniform turbine distribution

Turbines dimensions:

Turbines Location

Initial Conditions

Total Shear Stress (N/m²)

Total Shear Stress (N/m^2)

Change in Velocity (m/s)

Application of HK impacts work to Cook Inlet (snapshot of Cook Inlet water level, no devices)

Snapshot of velocity of Cook Inlet velocity (no devices)

Snapshot of velocity by East Forelands (no devices)

Comparison of modeled and measured water level at Nikiski (measured, — , modeled)

Comparison of modeled and measured depthaveraged velocity at Nikiski (measured, — , modeled —)

time (min)

Layout of ORPC Fire Island HK deployment plan

Estimation of potential HK impacts associated with virtual deployment by Fire Island

- Determination of effective Manning roughness associated with likely HK device deployment
- Assumptions:
 - Device area: 80 m²
 - Device efficiency: 30%
 - Number of devices: 134
 - Planform area of deployment: 750 m x 960 m
 - Blockage ratio: 0.03 (neglected)
 - Effective Manning roughness: .042

Snapshot of water level difference (assuming 134 devices, ebb tide

Snapshot of water level difference (assuming 134 devices, flood tide

Current magnitude difference (m/s) during ebb tide between no devices and ~ 1 device

x 10⁻³

Calculated cumulative erosion and deposition difference (no devices vs. ~ 1 devices) over 30 day period assuming 0.2 mm sand.

Future work

- Develop 3D circulation model and capacity to model the presence of HK devices at various locations with water column.
- Make detailed measurements of impact of HK devices (e.g., ORPC device) on flow velocity, turbulence and sediment transport
- Collect bottom, bedload, and suspended sediment samples in area of focus in Cook Inlet
- Develop sediment transport model for area of focus in Cook Inlet
- Project sediment transport impacts of HK devices in area of focus

Thank you!

- Department of Energy
- Electrical Power Research Institute.
- Alaska Energy Authority
- Ocean Renewable Power Corporation
- University of Alaska Chancellor's Fund
- Kenai Borough