

Modeling Coastal Erosion in Western Alaska – a proposed approach

Tom Ravens UAA College of Engineering Arctic Domain Awareness Center at UA

Why do coastal erosion modeling in Western Alaska?

- To forecast coastal erosion and shoreline change in near term (due to individual storms) and in long term.
- To assess vulnerability of coastal communities and coastal infrastructure.
- To enable thoughtful planning and wise capital expenditures.

Image courtesy of BEM systems

Coastal erosion modeling approaches

1. Linear interpolation.

2. Non-linear interpolation.

- 3. Semi-empirical modeling.
- 4. Process-based modeling.

Increasing sophistication, Increasing cost, Increasing precision / accuracy

Arctic Coastal Erosion Mechanisms:

Niche erosion / block collapse

Bluff face thaw / slumping

Cape Halkett Ben Jones, USGS

Erosion rates on north coast of Alaska (1980's era rates)

Ben Jones, USGS

Niche erosion / block collapse – Drew Point

Time period	Measured erosion rate (m/yr)	Calculated erosion rate (m/yr)	Calculated fraction of time shoreline is block- free (%)
Aug. 1979 – July 2002	8.0 ± 0.9	8.0 ± 0.8	68 ± 3
Aug. 2002 - July 2007	14.1 ± 1.7	14.9 ± 1.4	78 ± 2

Bluff face thaw / slump - Barter Island

Bluff face thaw /slump video (Ben Jones, USGS)

Longshore transport and coastal erosion

- key to next generation modeling and forecasting in Alaska.

 $\Delta V = Q \downarrow in - Q \downarrow out$

Erosion can occur due to longshore variation in the longshore sediment transport rate (Q),

where: $Q = C H \downarrow b \uparrow 5/2 \sin(2\alpha \downarrow b)$

Example study of non-arctic coastal erosion driven by longshore variation in alongshore sediment transport. (Galveston Texas)

Conclusions and Recommendations

- 1. Semi-empirical coastal erosion modeling approach recommended for Western Alaska.
- 2. The model should account for:
 - Thermal and mechanical processes,
 - Cross-shore and long-shore transport,
- Use historic shoreline position and environmental data for model calibration and validation.
- 4. Use projected environmental conditions (down-scaled climate models) for model forecasts.

Thanks!

Alaska Climate Science Center

Western Alaska LCC

