


### Alaska Water Level Partnership **CO-OPS** functionality for Alaska Data







Will Koeppen (Axiom) Nic Kinsman (NOAA) Laura Rear McLaughlin (NOAA)

## WL Data Management & Public Interface

- Focus is on stringent NWLON WL data products

- Mission to maintain authoritative WL observations

 $\rightarrow$  Accurate and reliable WL observations = backbone network

NOAA CO-OPS

- $\rightarrow$  Legal requirements to support navigation and engineering
- $\rightarrow$  Official Datums (land ownership & maritime boundaries)
- $\rightarrow$  Long-term relative sea level trends

 Dedicated to enabling supplemental instrument operation where NWLON operation is not needed or not possible
 → Policy for Management and Dissemination of External Source Water Level Data – December 2015 (AKA "Tiered Data



CURRENTS

# AOOS/CO-OPS WL Partnership

 Leverage partners and external data providers to formally supplement NWLON in Alaska

#### - A region-led implementation of the Tiered Data Policy

 $\rightarrow$  3 Tiers based on accuracy, vertical control, and application

| PRODUCTS                         | A: NWLON              | B: ~IHO Standard                                                            | C: Other Partner                                                |
|----------------------------------|-----------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|
| Real-Time Water Levels           | $\checkmark$ verified | √ as possible                                                               | √ >24 hr. latency                                               |
| Harmonic Constants & Predictions | $\checkmark$ official | √ unofficial                                                                | X                                                               |
| Bench Mark Sheets                | √ official            | √ unofficial                                                                | X                                                               |
| Datums                           | $\checkmark$ official | √ unofficial                                                                | Х                                                               |
| Sea Level Trends                 | √ official            | Х                                                                           | X                                                               |
|                                  | CO-OPS Data           | iGages, GNSS reflectometry,<br>seasonal pressure sensors, WL<br>buoys, etc. | rapid response tools,<br>high water marks, tide<br>staffs, etc. |

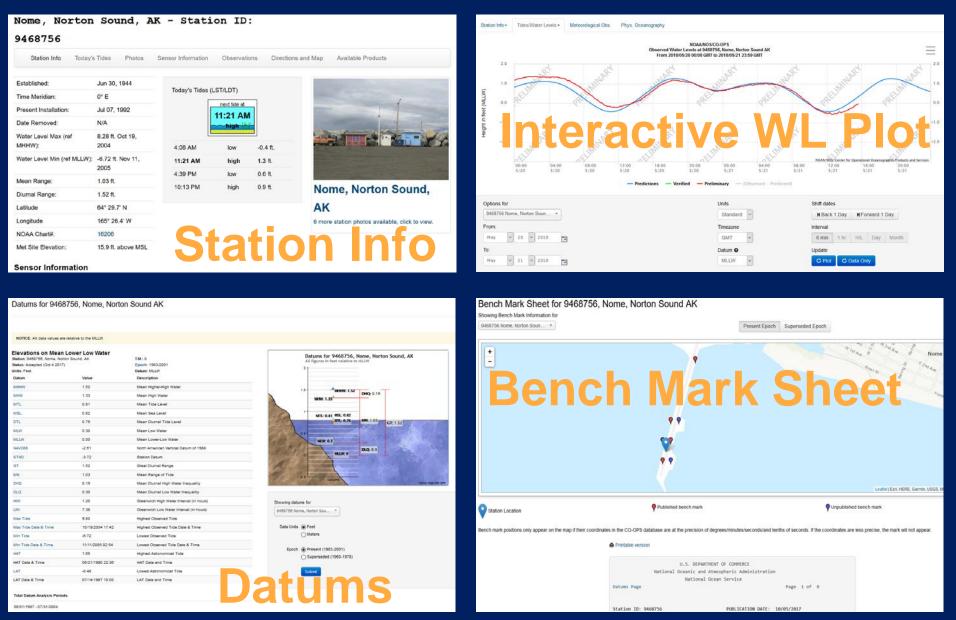
# Win-Win!

#### **CO-OPS Upside**

- Expands IOOS/CO-OPS relationship
- Enhances IOOS contributions to blue economy by densifying WL observations beyond NWLON backbone
- Pilots regional implementation of CO-OPS Tiered Data Policy vision
- Encourages use/development of new products and services that put WL evaluation in hands of users (e.g. tidal datum calculators)

#### Alaska WL Stakeholder Upside

- Public access to additional WL stations in Alaska
  - Increased consistency in format and delivery of WL records from a mix of sensors
- Enhanced data discoverability with centralized metadata
- Calculation of unofficial tidal datums




#### **CO-OPS Tools for Water Level Stations (ODIN**

man)



#### **CO-OPS Water Level Station Dashboards**



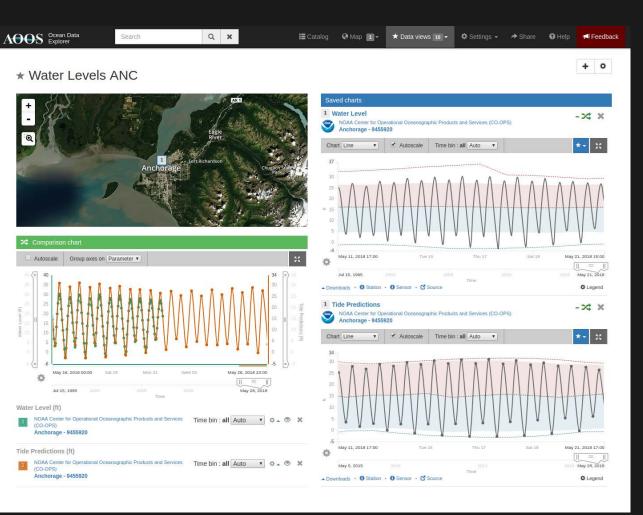
RSL Trends not shown



#### CO-OPS Water Level Station Data Inventory

| Wind                               | _    |      |                |               |           |      |                  |              | v            | Vind              |            |      |      | + -  | •    |
|------------------------------------|------|------|----------------|---------------|-----------|------|------------------|--------------|--------------|-------------------|------------|------|------|------|------|
| Water Temperature                  |      |      |                |               |           |      |                  |              | Wat          | Water Tempera     | ature      |      |      |      |      |
| Verified Monthly Mean Water Level  |      |      | Verified Month | Ny N Verified | Monthly N | 3    | Verified Monthly | Mean Water   | Level        |                   |            |      |      |      |      |
| Verified Hourly Height Water Level |      |      |                |               |           |      | Verified Hourly  | Height Water | Level        |                   |            |      |      |      |      |
| Verified High/Low Water Level      |      |      |                |               |           |      | Verified High/Lo | w Water Leve | e)           |                   |            |      |      |      |      |
| Verified 6-Minute Water Level      |      |      |                |               |           |      |                  |              | Ve           | rified 6-Minute W | ater Level |      |      |      |      |
| Preliminary 6-Minute Water Level   |      |      |                |               |           |      |                  | Preli        | minary 6-Min | ute Water Level   |            |      |      |      |      |
| Barometric Pressure                |      |      |                |               |           |      |                  |              | e            | arometric Pressu  | re         |      | 1    |      |      |
| Air Temperature                    |      |      |                |               |           |      |                  |              | A            | Nr Temperature    |            |      |      |      |      |
|                                    | 1955 | 1960 | 1965           | 1970          | 1975      | 1980 | 1985             | 1990         | 1995         | 2000              | 2005       | 2010 | 2015 | 2020 | 2025 |
|                                    |      |      |                |               |           |      |                  |              |              |                   |            |      |      |      |      |

# Data Access Tools: • Tides & Currents Dashboard/Map


- IOOS Data Portal
- GIS Data Portal
- Data API

## AOOS Tools for Water Level Stations

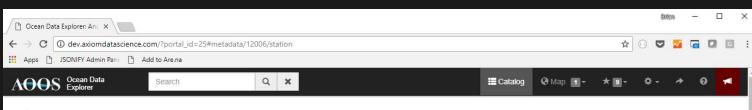
÷

(COLOPS

- Interactive graphs
- Interannual statistics
- Anomaly plots
- Data Views








### What we have so far

- AOOS has cyberinfrastructure
- And data
- Serving mechanisms through ERDDAP, THREDDS, OPeNDAP, etc.
- QARTOD for quality checks including gap tests
- AOOS API calls already include *Time Strata* fields



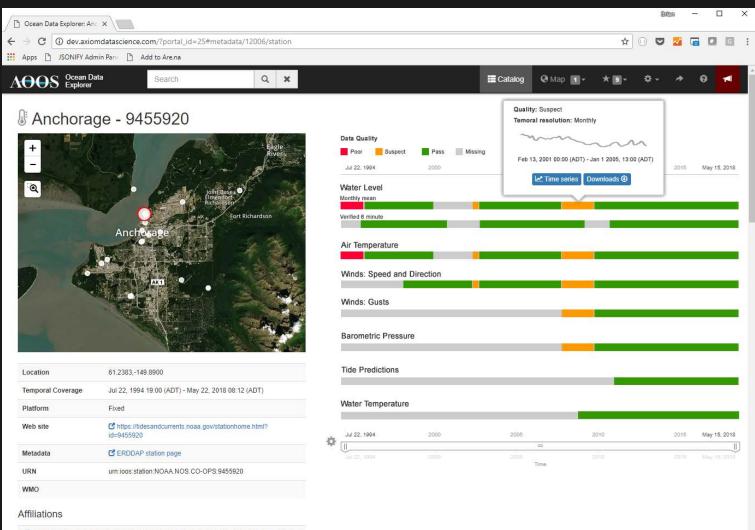
## What things might look like



#### Anchorage - 9455920



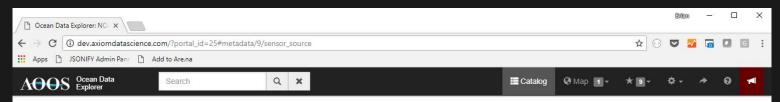
| Location          | 61.2383,-149.8900                                                   |
|-------------------|---------------------------------------------------------------------|
| Temporal Coverage | Jul 22, 1994 19:00 (ADT) - May 22, 2018 08:12 (ADT)                 |
| Platform          | Fixed                                                               |
| Web site          | C https://tidesandcurrents.noaa.gov/stationhome.html?<br>id=9455920 |
| Metadata          | C ERDDAP station page                                               |
| URN               | urn:ioos:station:NOAA.NOS.CO-OPS:9455920                            |
| WMO               |                                                                     |
|                   |                                                                     |


#### Affiliations

Source OPS) | ♂ Web site



Axiom


## What things might look like




Source OPS) | C Web site Source OPS | C Web site



## What things might look like



#### Solutional Oceanographic Products and Services (CO-OPS)



Web site C http://co-ops.nos.noaa.gov/

| Station                     | Water Level (38)    | <ul> <li>Search:</li> </ul>                     |             |
|-----------------------------|---------------------|-------------------------------------------------|-------------|
| (ADKA2) 9461380 - Adak Is   | land, AK            | Quality: Suspect<br>Temoral resolution: Monthly |             |
| (ALIA2) 9457804 - Alitak, A | к                   | mm                                              |             |
| (ATKA2) 9461710 - Atka, A   | ĸ                   | ~~~~                                            | m           |
| (CECC1) 9419750 - Cresce    | nt City, CA         | Feb 13, 2001 00:00 (ADT) - Jan 1 2005,          | 13:00 (ADT) |
| (CHAO3) 9432780 - Charles   |                     | 🗠 Time series 🛛 Downloads                       | •           |
| (CPVM2) 8575437 - Chesar    | eake Bay Visibility |                                                 |             |
| (ELFA2) 9452634 - Elfin Co  | ve, AK              |                                                 |             |
| (FREL1) 8762484- Frenier I  | anding, LA          |                                                 |             |
| (ITKA2) 9451600 - Sitka, Al | ¢                   |                                                 |             |
| (KDAA2) 9457292- Kodiak     | Island, AK          |                                                 |             |
| (KECA2) 9450460 - Ketchik   | an, AK              |                                                 |             |
| (KGCA2) 9459881 - King C    | ove, AK             |                                                 |             |
| (NKTA2) 9455760 - Nikiski,  | AK                  |                                                 |             |
| (NMTA2) 9468756 - Nome,     | Norton Sound, AK    |                                                 |             |
| (OHBC1) 9410660 - Los An    | geles, CA           |                                                 |             |
| (PFXC1) Los Angeles Pier    | F. CA - 9410670     |                                                 |             |





## Looking for Feedback

- Is API access to AOOS water level data inventories useful?
- Is seeing inventories across sources or regions helpful?
- Are QARTOD results useful to data creators or users or do most users just use station-reported accuracy values?
  - Water level QARTOD tests: timing/gap, gross range, climatology



### Questions for us?

#### LINKS

#### http://portal.aoos.org

http://erddap.aoos.org http://thredds.aoos.org



