Modeling Wild Crab Responses to OA and Warming

Esther Kennedy

Esther Kennedy

- PhD student at UC Davis in Tessa Hill's Ocean Climate Lab.
- Currently research:
 - OA impacts on Bering Sea king crab
 - Coastal OA in California
- Previously spent 5 years as an environmental scientist for the Sitka Tribe of Alaska.

I currently live and work on Dena'ina and Patwin lands. I acknowledge and honor their stewardship.

Jessica Cross

Darren Pilcher

Additional Collaborators

Also, many thanks to Jon Richar, Kalei Shotwell, Chris Long, Cole Monnahan, Al Hermann, Wei Cheng, and especially Jim Thorson for technical help, feedback, and data access.

Motivation

- Large mismatch between the information available from lab studies and the data available from the field.
 - In lab studies show larval and juvenile crab directly at risk from OA.
 - In field limited OA measurements and essentially no larval or juvenile crab data.
- Urgent need to understand risks for sustainable fisheries and subsistence harvests.
 - King crab fishery is most valuable fishery in the state.
 - Can't manage for what we can't monitor.

Projected Crab Fishery Yields Under Different OA Scenarios

Goal: to develop a fishery-relevant indicator of OA stress in king crab.

Pilot study results: broad environmental patterns

Primary Surface Temperature Pattern

Pilot study period from 2003-2012.

Transition from warm to cool conditions.

Warmer temperatures correspond with more favorable OA conditions on the shelf and in Bristol Bay. **Primary Aragonite Saturation Pattern**

Pilot study results: RKC distribution

RKC Index vs Temperature Index

Strong correlation between the RKC distribution and temperature.

- Warm temps → higher RKC densities in central Bristol Bay
- No separable OA effects

Future Research 🕑

Incorporate more detailed environmental information into RKC models.

• Could include both measured and modeled environmental data.

Extend analysis to other king crab species, female crab, and/or different size classes.

Examine a longer time series.
OA hindcast will extend from

1970 to 2020.

This ongoing research is funded by an NPRB Graduate Fellowship.

Conclusions

Large mismatch between lab-available OA information and field-available OA information

• Makes assessing OA impacts to the fishery challenging.

OA hindcast offers new possibilities for fishery indicators.

• King crab models of OA impacts could be improved with more spatial environmental or biological information (e.g. temperature, dissolved oxygen, crab obs.)

OA and climate change are happening together - the effects will be difficult to disentangle.