Overview of the effects of ocean acidification on commercial Alaskan crabs

W. Christopher Long, Kathy Swiney, Robert Foy
Kodiak Laboratory: Running OA experiments since 2008

- Focused on federally-managed commercial crab species
- Crabs are long-lived
- Have many very different life history stages
Red king crab life history

This cycle takes about 7-9 years to complete!
Red king crab

- Embryos (late development)
 - No effect on mortality
 - Slight change in development
 - Results from longer term project pending
- Larvae
 - Slightly increased mortality
 - Pending longer term results
- Juveniles
 - Decreased growth
 - Increased mortality
 - Decreased condition
 - Decreased hardness
 - Effects are temperature dependent
- Adults
 - Increased calcium content
 - Altered gene expression
Blue king crab

• Juveniles
 • Decreased growth
 • Increased mortality
 • Increased respiration rate
 • Decrease hardness
Golden king crab

- Juveniles
 - Decreased growth
 - Increased mortality
- Adults (results pending)
 - Hardness
 - Hemolymph chemistry
 - Immune response
Tanner crab

- Embryos
 - BIG increase in mortality
 - Slight change in development
- Larvae
 - Increased mortality
 - Decreased calcium content
- Juveniles
 - Decreased growth
 - Increased mortality
 - Decreased calcification
- Adults
 - Decreased immune response
 - Decreased hardness
 - Gene expression pending
Adult Tanner crabs- shell dissolution

Snow crabs

- **Embryos**
 - No effect on mortality
 - No effect on development

- **Larvae**
 - No effect on mortality
 - No effect on calcification
 - No effect on condition

- **Juveniles**
 - In progress

- **Adults**
 - No effect on hardness
Past Results: Crab Summary

<table>
<thead>
<tr>
<th>Species</th>
<th>Life history stage</th>
<th>Growth</th>
<th>Mortality</th>
<th>Respiration</th>
<th>Feeding rate</th>
<th>Condition</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red king crab</td>
<td>Embryo</td>
<td></td>
<td></td>
<td>=</td>
<td></td>
<td></td>
<td>Altered</td>
</tr>
<tr>
<td></td>
<td>Larvae</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juvenile</td>
<td>Decreased</td>
<td>Increased</td>
<td>Increased</td>
<td>=</td>
<td>Decreased</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Blue king crab</td>
<td>Juvenile</td>
<td>Decreased</td>
<td>Increased</td>
<td>Increased</td>
<td>=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden king crab</td>
<td>Juvenile</td>
<td>Decreased</td>
<td>Increased</td>
<td></td>
<td>Altered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanner crab</td>
<td>Embryo</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Altered</td>
</tr>
<tr>
<td></td>
<td>Larvae</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juvenile</td>
<td>Decreased</td>
<td>Increased</td>
<td></td>
<td>Decreased</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Snow crab</td>
<td>Embryo</td>
<td></td>
<td></td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larvae</td>
<td></td>
<td></td>
<td>=</td>
<td>=</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td>=</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Life history stage</th>
<th>Calcification</th>
<th>Exoskeleton hardness</th>
<th>Hemolymph pH</th>
<th>Immune system</th>
<th>Gene expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red king crab</td>
<td>Embryo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larvae</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juvenile</td>
<td>=</td>
<td>Decreased</td>
<td></td>
<td>Altered</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue king crab</td>
<td>Juvenile</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
<td>Altered</td>
</tr>
<tr>
<td>Golden king crab</td>
<td>Juvenile</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanner crab</td>
<td>Embryo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larvae</td>
<td>Decreased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juvenile</td>
<td>Decreased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td>Decreased</td>
<td></td>
<td></td>
<td></td>
<td>Decreased</td>
</tr>
<tr>
<td>Snow crab</td>
<td>Embryo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larvae</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td>Decreased</td>
<td></td>
<td></td>
<td></td>
<td>Decreased</td>
</tr>
</tbody>
</table>
Some Crabby Observations

• Red king crab and Tanner crab are more sensitive to OA than snow crab and blue king crab
• Larvae are pretty resistant to OA
• Juveniles are the most sensitive
• There’s a lot of differences among species
• Some species can adapt
In progress/planned

• In progress
 • Effects of food ration and OA on red king crab juveniles
 • Effect on juvenile snow crabs
 • Effects on gene expression in snow crab adults
 • Effects of OA and temperature on snow crab embryos and larvae
• Planned
 • Effects on blood chemistry in Tanner and snow adults
 • Effects of OA and temperature on snow crab juveniles
 • Effects of OA and temperature on Tanner crab juveniles
 • OA selection experiment (Tanner crabs)
Thanks

Kodiak Lab Staff